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Abstract 

This paper gives a critical review of the physical meaning of the chemical potential, 
perhaps the most abstract of all thermodynamic quantifies. To show its basic behavior, 
thereby to illustrate its physical significance, we have derived the chemical potential 
of a system of free electrons as a function of the density and temperature in 
different spatial dimensions. We have shown how to obtain the isothermal compressibility 
given the chemical potential. To emphasize the usefulness of the knowledge of 
dimensional dependence, both the compressibility and average kinetic energy are expressed 
as simple dimensional relationships of the density and, hence, the chemical potential. 
Finally, there is a certain temperature at which the chemical potential should identically 
vanish. Physical implications of zero chemical potential are discussed. 

1. Introduction 

The chemical potential # is an important thermodynamic potential expressing a 
physical state of a large system. It is a thermodynamic variable conjugate to N, the 
number of particles in a system. One of its standard definitions is: # = (~U/aN)s, v, 
where U, S, and V are, respectively, energy, entropy and volume of a system. It states 
that the chemical potential is the energy necessary to add one particle to a system 
without changing both the entropy and volume. It is also a useful quantity. The iso- 
thermal compressibility may be obtained from it. One of the necessary conditions for 
phase or chemical equilibria is provided by the chemical potential [1]. 

In spite of its importance and usefulness, the chemical potential remains an 
abstract thermodynamic quantity. It is neither absolutely positive nor negative. Its sign, 
in fact, can depend on temperature and particle statistics. In addition, it is not directly 
calculable via the formalism of statistical mechanics. It must ordinarily be obtained 
from other quantities, e.g. the density. Its absolute significance is unmasked only at the 
lowest possible temperature. At very low temperatures, the chemical potential shows 
dimensional dependence including an even-odd effect [2]. As the temperature rises, the 
dependence on the dimensions begins to disappear. These are a few examples of the 
subtler properties of the chemical potential. 
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84 M.H. Lee, Fermionic chemical potential 

Recognizing its relevance to the thermodynamics of metals, we shall consider a 
system of N free electrons homogeneously distributed over a volume of D dimensions. 
At the lowest temperature (T = 0), these electrons, following the Pauli principle, 
uniformly fill single-particle energy eigenstates starting from the lowest level to a 
maximum level referred to as the Fermi energy e~. This constitutes the ground state of  
our system of N free electrons. If one were to add one more free electron to this ground 
state without changing the volume, the minimum necessary energy is thus the Fermi 
energy. Since the entropy of  these electrons in the N-particle ground state is zero, adding 
an electron in the lowest available level above the Fermi energy does not affect the 
entropy. Hence, the chemical potential at T = 0 is just the Fermi energy and the chemical 
potential at T = 0 is a positive energy quantity. 

As the temperature rises, the distribution of these filled states changes since some 
electrons near the Fermi energy can take up higher energy states, vacating the states they 
had previously occupied. This change in the distribution of occupied states results in a 
change in the chemical potential. What is the chemical potential now? Is it greater or 
less than at T = 0? It turns out that it is greater in one dimension but less in two and three 
dimensions. 

Sommeffeld [3] first showed how to calculate the chemical potential of  N free 
electrons in three dimensions at finite T. His calculation is somewhat crude but 
physically intuitive. Recently, Barker [4] has shown a more elegant way using an idea 
due to Blankenbecler [5]. This work can be generalized to all dimensions [6]. In this 
review article, each of these calculations will be explained in some detail. It is hoped 
that these explicit calculations will help to make the chemical potential seem less 
abstract. 

In recent years, there has been much interest in the physics and chemistry of low 
dimensions, stimulated by device fabrication. Also, high dimensions are regarded as a 
domain where mean-field theories become valid. These modem developments have 
freed us from three dimensions. In fact, they have encouraged us to look at physical 
properties in other dimensions, where one occasionally finds surprises in store. 

2. Statistical basis of chemical potential 

Let N be the number of  particles in a volume V = L D, where D denotes the 
dimensionality and L the length. Let n(k) be the momentum distribution of states of 
particles such that 

N =  ~.,n(k). (1) 
k 

On physical grounds, one may assume n(k) to be non-negative for any value of  the 
momentum k. If these particles are electrons, the momentum distribution per spin state 
is a function of  the chemical potential and momenta. It is given as 
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n(k, z) = (1 + z-~exp13e) q, (2) 

where z = expa ,  a = fl/.t,/3 = 1/kT, e = k2/2m; m is the mass of  the electron [1]. 
In the thermodynamic limit (i.e. N, V --+ 0% but t9 - N/V ---> const.) one can replace 

the sum over k in (1) with an integral. For an isotropic system, one obtains the density 
per spin state 

p = h-Dr dDk n(k,z) : h-DVD f dk k D-1 tz(k, z), 
o 

(3) 

where v o = 2a'°/2/F(D/2), and h is the Planck constant. Changing the variable from 
k to e = k2/2m, we can express the density per spin more conveniently as 

1 (2m/h2 )D/219o i  de 6 -1 +D/2n('E;z). P = g  
0 

(4) 

The chemical potential/.t is contained in the integrand of  the above equation through 
n(e, z). Thus, it must be obtained from the fugacity z, which must be extracted from the 
expression for the density. The resulting chemical potential will be found to be a 
function of  the temperature T, and density p, and dimensionality D. One should, 
therefore, note that the dependence of the chemical potential on these parameters is 
derived, and not intrinsic. 

3. Chemical potential at high temperature 

If the temperature is high (i.e. 13 ---> 0), the distribution function n(e, z) may be 
expanded as follows: 

n ( & z ) =  l + z - l e x p 1 3  e n=l~(-1)n+lz%xp(-n13e)" (5) 

Substituting (5) into (4), one can carry the integration term-by-term and obtain 

p X  ° = ~., ( -1)n+lznn-D/2 - K D / 2 ( z ) ,  (6) 
n = l  

where X = (2rim kT/h2) -1/2 is the thermal de Broglie wavelength. By a reversion process, 
we obtain 

a = 13/2 = log(p~D)  + a(p~O)  + b( p~O)2 + . . . .  (7) 
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where a = 2 -DI2, b = 3 x 2 -D- 1 _ 3-012, etc. Since pA D --+ 0 at T -+ ,~, the log term in 

(7) is dominant. We recover the well-known classical expression 

# = kT  log (pAD). (7a) 

In the classical regime, the subtle dependence of the chemical potential on the dimen- 
sions expressed through the coefficients a, b, etc., becomes completely lost in the 
presence of  the dominant log term. Since p A  D < 1 in this regime, the chemical potential 
is negative. Hence, the fugacity is bounded by 0 < z < 1. The expansion (6) is thus 
convergent. 

Now, i fT  ---> 0, pA  D ---> 1. Thus, the log term is no longer important and ',.he power 
series terms may not be neglected. In this regime, in fact, z > 1. Hence, the expan- 
sion (6) is not convergent. One must look for another way to obtain the chemical 
potential. 

There is, however, one special solution of  interest that can be obtained from (6). 
Let D = 2 in (6). Then, we obtain immediately 

pA2= log(1 + z). (8) 

Hence, 

z = expfl# = -1  + exp(p~2).  (9) 

This solution is valid for any temperature. If T --+ O, one obtains 

# = ph2/2~rm + O(T). (9a) 

The leading term is a positive quantity, independent of  the temperature. This is just the 
energy required to acid one particle to the system at T = 0, holding the entropy and 
volume fixed. We shall later show that (8) can also be obtained from a low temperature 
formulation. 

4. Low temperature chemical potential in odd-numbered dimensions 

4.1. METHOD OF SOMMERFELD 

We shall now consider (4) at low temperatures, At T = 0, we observe from (2) 
that n(e, z) = 1 if 0 < e < #o; n(e, z) = 0 if e >/.t o, where by #o we mean the chemical 
potential at T = 0. That n(e, z) is non-negative implies that /'to is also non-negative. 
Hence, by definition, /.t o must be the Fermi energy %, the highest occupied single- 
particle energy in constituting the ground state of  a system of N free electrons. Then, 
one obtains from (4) that 
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o r  

p = (2n:m #o/h2) D/2 F(1 + D/2) 

pZo = %0/21-'(1 + D/2), 

(10a) 

(lOb) 

where F is the gamma function and a o = il#o" Observe that when D = 2, it is a result 
already obtained in (9a). 

Eliminating the density in favor of  the zero-temperature chemical potential/.t o , we 
can rewrite (4) in the following dimensionless form: 

a0 °/2 = (D/2) l(a), (11) 

where 
o o  

l (a)  = I dx X -1 +DI2 n(x ,  O~), (1 1 a) 
0 

with a = fl#. Note mat 1(%) = (2/D) ao DI2. 
Looking at (11), one might expect that l (a)  would behave analytically in 

the vicinity of T = 0. This turns out to be true if D is an odd number. Although 
Sommerfeld [3] considered it when D = 3 only, it is not much more difficult to study 
(11) for the entire family of  odd-numbered dimensions, as we shall do here. This will 
show us the dimensional relationship in the chemical potential at low temperatures, 
which will be found useful. 

Observe in the integrand of ( l l a )  that i f x  -+ ~o, n(x, a) --+ exp - ( x -  a). Hence, 
main contributions come from the range of  x for wNch n(x, a) is not exponentially 
damped. This behavior becomes more apparent if we look at the derivative of  
n(x, a) = n (x -  a, O) - n (x -  a). Then, 

d/dx n(x - a) = 
- 1  

(1 + e x p ( x -  a ) ) (1  + exp - ( x -  a ) )  
- - g ( x -  a). (12) 

This function g ( x -  a) is symmetric about x = a and it is peaked at x = a. At T = 0, it 
is in fact a delta function. As T increases, the peak spreads out smoothly. 

To use the above-noted properties, one needs merely to convert n ( x - a )  to 
g ( x - a )  by writing x q +D/2= (2 /D)d /dxx  DI2. Hence, it is convenient to define 

fo (x) = x ~/2. Then 

(D/2)  I( a) = i dx fD(x) g(x - a). (13) 
0 

Hence, from (11), 

o o  

ao DI2= ~ dx fD(a+ x)g(x).  (14) 
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I f  T --~ 0, tz ~ oo. Since g(x) is now peaked at its origin (x = 0), one might  extend the 
lower  limit from - a  to _oo without affecting the value o f  the integral (14). The  error of  
this approximation is of  the order  o f  exp - a (see appendix A). IffD(X + ¢Z) is an infinite 
series - as it is when D is an odd number  - then the error is small and negligible. 
However ,  iffD(X + a) is an entire function (e.g. a polynomial)  - as it is when D is an 
even n u m b e r -  the error is still small but now not negligible. For  this reason, the method 
o f  Sommerfe ld  may  be used only when D is an odd integer number. 

Let  D be an odd integer number. We next Taylor-expandfD(a + x) about x = 0 
where g(x) is peaked, and then carry out term-by-term integration. We obtain 

o o  

0~g/2= Z h2n(Ot)g2n/(2n!), 
n=O 

where 

(15) 

and 

h~ (or) = ( d / d a ) n f D ( a )  

gn = dx xn g(x). 

Both h n and gn may be readily evaluated. Thus,  

(ao/a) DI2 = 1 + (a'2/6.22)D(D - 2) o: -2 

+ (7rc4/360.24)D(D - 4 )  ¢z -4 + . . . .  

(16) 

(17) 

(18) 

By revert ing the above expression, we obtain 

a/cz o = 1 - ( ;¢2 /2 .3! ) (D-  2) ao  2 

- (zr4/2.6!)(D - 2)(D - 6)(D - 9) ¢zo -4 - . . . .  (19) 

Observe the appearance of  (D - 2) in the coefficients o f  expansion. Because o f  
the presence of  this factor, the chemical potential in D = 1 is distinguished from that in 
all other  odd-numbered dimensions. I f  D = 1, the chemical  potential initially increases 
with the temperature. In all other  odd-numbered  dimensions, the chemical  potential  
decreases with the temperature. That  is, it takes more  energy to add a particle at T > 0 

than at T = 0 i f  D = 1. It takes less energy if  D = 3, 5 . . . . .  Below, we give a few 
examples:  

a / a  o = 1 + (a'2/12) aft 2 + (n-4/36) ao --4 + . . .  

¢z/cz o = 1 - (lr1/12) aft = - (zc4/80) 1 3 ~ O 4 - -  . . , 

¢~/~o = 1 -- (//:2/4) Oto2 -- ( / / : 5 1 2 0 )  a g  4 - - . . .  

(D = 1). 

(D = 3). 

(D = 5). 
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For odd-numbered dimensions, the chemical potential is an analytic function of 
the temperature T and it is regular at T = 0. Our results show a definite dimensional 
dependence in the chemical potential at low temperatures, absent at high temperatures. 
This kind of dimensional dependence has its origin in quantum mechanics. 

4.2. THE METHOD OF BARKER 

Now returning to (14), we shall write it out explicitly: 

otO/2 = I dx ( ct + x )D/2 eX (1 + eX)-2" 
0 

(20) 

Blankenbecler [5] notes that one can write 

fo(ot + x) - (a  + x) °/2 = eX~a °/2 = eX'~fD(a) (21) 

as a series where 6 = ~/~ a.  Next, let s = e x. Then, (20) may be expressed as [4] 

e x a 
a g / 2  = d s -  

z- 1 (1 + s) 2 fo (a ) '  (22) 

where z -1 = e x p ( - a ) .  As T---) 0, z -1 --~ 0. Hence, as in the method of  Sommerfeld, 
we may replace the lower limit by zero, provided that the error is negligible (see 
appendix A). As already noted, the error is negligible if D is an odd number. 

The above integral may be evaluated by a contour integration as follows: Con- 
sider a closed contour c, shown in fig. 1. Regarding s as a complex number, we may 
write 

S 6 
1 i d s  (1 + s )  ~ - (residue at s = -1 ) .  (23) 

2~ri c 

Referring to the contour shown in fig. 1, we draw a branch line on the positive real axis 
from s = 0 to s = ,,o. Contributions from the small and great circles clearly vanish. Hence, 

I s6 i (s e2~i)6 i s6 (24) 
d S ( l + s ) 2 -  d S ( l + s ) 2  + d S ( l + s ) 2 "  

c oQ 0 

The residue of  a second-order pole at s = - 1  is t~exp(izc(t~- 1)) = -Sexp( i~b ' ) .  
Therefore, 

i $6 0 ds (1 + s) ~ - ~rS/sin rot3. (25) 
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Fig. 1. The contour of integratmn shown in eq. (25) (after Barker, 
see ref. [4]). The arrows indicate the directions of integration. The 
radius of the small circle is arbitrarily small, while the radius of the 
great circle is arbitrarily large. Also indicated is one simple pole at 
s = expi~; encircled by the path of integration. 

Hence, we obtain a very simple looking formal result for (22): 

a0 °/2 = (,cS/sin *r fi)fD( a). (26) 

One may interpret the operator standing before fo(a) as follows: 

zc 5/s in zc5 = 1 + (1/6)(zr 5) 2 + (7/360)(zr5) 4 + . . . .  (27) 

By applying repeatedly the differential operator 5 = O/Oa onfD(a) as required, one can 
evaluate the right-hand side of (26). One then recovers the results already given in (18). 

One can obtain the above result perhaps most simply if one changes the variable 
in (22) to s = y/(1 - y) [6,7]. Then, the integral may be put in a standard form of the 
beta function [8]: 

oo $6 

ds (1 + s) 2 = i d y y ~ ( 1 - y ) - a  = B(1 + 5, 1 -  6) 
0 

= F(1 + 5 ) F ( 1 -  5) /F(2)  = g f / s i n  zv& (28) 
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5. Low temperature chemical potential in even-numbered dimensions 

When D is an even number, the methods of  Sommerfeld and Barker lead to an 
inaccurate solution for the chemical potential. This inaccuracy points out an interesting 
property when an analytic function is also an entire function (e.g. a polynomial).  In the 
method of  Sommerfeld,  also of  Barker, the lower limit of  an integral expression of  the 
chemical potential is made to go to _oo. This approximation introduces an error of  the 
order of  e x p ( - a ) ,  as shown in appendix A. This error is evidently smaller than any 
positive integer power of  ( i / a )  as a ---> ~.  Although small, whether this error is 
negligible depends on a certain analytic property of  the function fo(a). 

Iffo(a) is analytic in some domain (i.e. or -1 < 1), then the chemical potential may 
be expressed as 

M 

= a (29)  g,2 E c2m , 
m = 0  

where c ' s  are numerical coefficients depending on D. If  D is not an even number, 
M --4 ~,, where M is the upper limit of  the sum (29). Thus, the error introduced by the 
above-mentioned approximation is no larger than the smallest term of  the above expan- 
sion, a -2M as M ---> ~.  Hence, the approximation is entirely justified (i.e. the error is 
negligible). If  D is an even number, fo(a) is an entire function of  a. Hence, now 
M < ,,o. The approximation is no longer negligible. 

When D is an even number, it is thus necessary to evaluate the chemical potential 
from the exact expression (11) [6] 

a~ = ~ i dx(a+x)k-1 
1 + e  x 

--Of 

(30) 

where k = D/2 = 1,2, 3 . . . . .  It does not appear possible to obtain a general solution 
from (30). Hence, we shall consider it for some special values of  D. 

(1) D = 2 

From (30), it follows directly that 

a0 = d x - -  - = l n ( l + z ) ,  (31) 
- a  l + e X  _ _ y +  1 

where z = exp a. Hence, 

e a °  = 1 + e a ,  (32) 
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which is also the expression obtained from the high temperature series expansion. This 
exact solution (32) for D = 2 turns out to be the only closed form expression possible 
for any D, even or odd. It is useful for testing, for example, approximations. 

For low temperatures, we obtain the following expansion: 

ao = a +  e - a -  ( 1 / 2 ) e - 2 a +  (1 /3)e  - 3 a -  . . . .  (33) 

If the method of Sommerfeld or Barker were applied, one would have obtained only the 
leading term of the r.h.s, of  (33), thereby missing all the correction terms. It would 
indeed be a poor approximation. Note also that each of the correction terms is equal to 
or smaller than e x p ( - a ) .  

At low temperatures, a = a o. Hence, a i s  a positive number since a o is a positive 
number. However, at high temperatures it follows from (32) that a (hence #) must be 
negative, since a o = 0. This implies that at a certain temperature, say T*, the sign of the 
chemical potential # changes. That is, At(T*) = 0. This point will be further discussed 
in section 7. 

(2) D = 4 

From (30) we have 

x 
a 2 = 2 ( l n z ) ( l n ( l + z ) ) + 2  dx l+e---- ~ ,  (34) 

where z = exp a. 
The integral on the r.h.s, of (34) cannot be expressed in terms of elementary 

functions, but it can be given a series expansion as follows: 

•f d x x  
2 1 + e  x 

- -  ¢ t  

- -  - -  ( l n ( l  + 2 - 1 ) )  2 - -  (lnz) 2 + 2h(z-1), 

where 
e ~  

h(z - 1 ) =  ~ n - 2 ( l + z - 1 )  -n. 
n = l  

(35) 

(36) 

Substituting (35) into (34), we obtain 

a 2 = (ln(1 + z))  z + 2h(z-l) .  (37) 

For z -1 ---> 0, one may replace h(z -~) by h(0) = rcz/6, i.e. 

(ln(1 + z ) )  2 = a 2 - Ir2/3. (38) 
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Hence, one may write approximately: 

e a = - 1  + e a ° ( 1 -  ( ~ 2 / 6 a 0 ) + . . . ) .  (39) 

If one were to neglect h(z-1), then (37) is exactly the same as the solution for D = 2 (see 
eq. (32)). For higher even-numbered dimensions, one can obtain the chemical potential 
in essentially the same way. It will have a structure shown in (39). From the solutions 
for D = 2 and 4, it is quite clear that the low-temperature behavior of the chemical 
potential in even-numbered dimensions is very different from that in odd-numbered 
dimensions. Also, unlike in odd-numbered dimensions, T = 0 behaves like an essential 
singular point. 

Finally, using (6) and (10a), we can write 

ao k = r(k + 1) ~ (--1)n+lznn-k, (40) 
n = l  

where k = D/2. One may immediately verify that (37) corresponds to (40) if  D = 4. 

. Chemical  potential  and compress ibi l i ty  

One very useful role of the chemical potential is played by its connection to the 
isothermal compressibility or susceptibility Zr, defined as [1] 

Zr  = P-2(~P/~#)T ,v .  

Since T is held fixed, one may also write (41) as: 

Z,T = (PI[3)ZT = (1 /p2cD)oI~a(PZ D) = (llp)cD)Z~I~z(P2cD), 

(41) 

(42) 

where z = exp a. If T is high such that z < 1, then from (6) it follows that 

z r ( D )  = KD/2- 1 (z)/Ko/2 (z) 

= p ( D -  2)~,D-2/p(D)~ o, 

(43a) 

(43b) 

where we have inserted D to indicate the relevant dimensions. In obtaining (43), we 
have used the property that for any number p, 

z d/dz XCz) = l(z), (44) 

where 
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K p ( z ) =  ~., ( - 1 ) " + l z n / n P .  (45) 
n = l  

Although (43b) is derived for z < 1 (high temperature), one can also prove that 
it is valid for z > 1 (low temperature). This is shown in appendix B. 

If D = 2, our analytic solution (8) provides a ready application. Noting that for 
D = 2, pA. 2 = cz 0 (see (10by), we obtain from (42) in (43a) that the susceptibility per spin 
is given by 

Z Z 
2 T ( D  = 2 ) =  - . (46) 

(1 + z)log(1 + z) (1 + z)O~0 

The compressibility is finite for all non-negative values of z. If T --~ ~,  2"7" --) fliP, which 
is the classical limit. If T + 0, ZT --o 1/(p/t0), which is the quantum limit. Observe that 
the susceptibility (46) is maximum at T = 0 and it smoothly vanishes with T. Also, (43b) 
and (46) imply that p(D = O) = z/(1 + z) --~ 1 with (10by, i.e. z -o ~, in D = 0. That is, 
in zero dimension (if meaningful) there is no classical regime! 

For odd-numbered dimensions at low temperatures, we can use (18) in (43b) to 
obtain the susceptibility, per spin at once, 

XT( D) = ( D / 2 p  /to )(1 + aD O~ -2 + O(a-4 ) ) ,  (47) 

where a D = - ( ~ / 6 ) ( D  - 2), etc. 
If D 2 3, a D is negative. Hence, the susceptibility decreases with T. If D = 1, then 

the susceptibility increases with T. This behavior is quite similar to the behavior of  the 
chemical potential itself. At T = 0, the susceptibility is finite. 

For the high temperature susceptibility, we obtain using (43a) 

Z r ( D )  = ( f l / p ) ( 1  - 2 D/z-  Iz + O(z2)), (48) 

which is valid in any dimension, even or odd. We recognize the well-known classical 
limit. 

7. Concluding remarks  

The chemical potential, as noted, is an abstract thermodynamic quantity. In an 
effort to make it more familiar, we have calculated the chemical potential of free 
electrons. In particular, we have shown some of the subtler properties, such as its 
dependence on the temperature and dimensions. There is one additional point of  some 
interest, to which we shall now turn our attention. 

At high temperatures the chemical potential is negative, but at lower temperatures 
its sign changes. Hence, at a certain temperature, say T = T*, the chemical potential 
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must have zero value. It is not difficult to calculate T*. For D = 2, we use our analytic 
solution (32) to obtain: #o/kT* = In 2 = 0.69314 . . . .  For D > 2, one can obtain T* from 
a general relation using (6) and (10b): 

F(1 + D / 2 ) ( # o  [kT*) D/2 = (1 - 21 -D/2) ~(D/2), (49) 

where ~'(D/2) is the Riemann-zeta function [8]. One can see that this temperature is such 
that (#o/kr*) is of order unity (i.e. macroscopic). 

We shall now examine the physical significance of  this temperatureT*. From 
~ennodynamics,  we know # = (-OS/ON)v v" At r = r* ,  t2 = 0 by definition. Then, the 
entropy S must become independent of the'number N, hence, the density p. That is, the 
number states are indefinite at this temperature. Such an unusual physical state, i.e. 
# = 0 at a finite T, also exists in a system of free Bose particles in D = 3. An examination 
of the same phenomenon in a Bose system may be helpful even though the two systems 
are generally quite dissimilar. 

If T > ThE, where ThE means the Bose-Einstein condensation temperature, there 
is one homogeneous phase of Bose particles with an N-dependent entropy. The 
chemical potential is negative. As r --) ThE from above, # ---) 0. At T = ThE, there 
appears a new phase (Bose condensed phase) with zero entropy and zero chemical 
potential. This new phase is thus in equilibrium with the original (uncondensed) phase. 
The uncondensed phase has an entropy, but it is now N-independent. That is, the number 
states are indefinite. Even as T --~ 0, the chemical potential of each phase still remains 
zero. Hence, both phases remain in equilibrium. However, more and more particles 
enter the condensed phase from the uncondensed phase without affecting their 
entropies. Thus, there is a range of  temperatures (0 < T < ThE ) in which the two phases 
can and do coexist with zero chemical potential. As a result, the isothermal susceptibi- 
lity is divergent throughout. 

Now let us retum to our system of free electrons. The chemical potential 
of this system, unlike that of a Bose system, can be both positive and negative. 
Let the state of a positive chemical potential be referred to as a quantum phase and 
the state of  a negative chemical potential as a classical phase. The two phases (not like 
the two Bose phases) can never be in equilibrium except at one unique point T = T* 
when # = 0. The susceptibility is thus finite (as in a low-dimensional Bose system for 

which TBE = 0). 
In grand ensemble theory in statistical mechanics [1], the chemical potential 

provides a weighting factor for number states through exp (#N/kr), just as the tem- 
perature does for energy states through exp(-U/kr) in canonical ensemble theory. In 
the classical phase of  electrons, small number states are thus favored, whereas in the 
quantum phase, large number states are favored. At T --) T* from above, more and more 
of  larger number states begin to be counted. At T = T*, all number states are equally 
probable. As T falls below T*, the system now flops over into the quantum phase. One 
may thus regard T* as either the lowest limit of  the classical regime or the highest limit 
of  the quantum regime of free electrons. 
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Appendix A 

Error bound 

In the methods of Sommerfeld and Barker, there is an approximation intro- 
duced at the outset. The lower limit of  a certain integral (see (14)) is extended from - a  
to _co as shown below: 

f d x f o ( a + x ) g ( x )  ---> dx fo (a+x)g (x ) ,  (A1) 

w h e r e f  D and g(x) are already defined (see eq. (12) and following) and a > 0. Usually, 
this approximation is taken to be sufficiently accurate since the function g(x) is peaked 
at its origin. Below, we shall give an estimate of errors introduced by this approxi- 
mation. 

Consider the following: 

- f  l a + x l k e  x f l a - x l k  e-X 
I k = dx (1 + e/)  2 - dx (1 + e-x) 2 ' (A2) 

where k = D/2. This quantity is the difference between the exact and approximate 
expressions given in (A1) except for an absolute sign. An absoulte sign is introduced 
to simplify our argument, which cannot affect the order of magnitude in this problem. 
It then follows that 

Ik -< S d x l a - x l k e  -x = F(k+ 1)e -=. (A3) 

Therefore, we may conclude that errors due to the approximation (A1) are of the order 
of  e -a, which is smaller than any positive integer power of ( l / a )  as a -4 oo. 

Appendix B 

Susceptibility and density 

Using (10b) and (30), we can express the D-dimensional density as 

p(D);L ° - 

o o  

1 ~ dx (OEh'X)-I+D/2 
F(D/2)  1 + e x 

(B1) 
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Now differentiate both sides with respect to tx, holding T and V fixed: 

d /d  a(p(D)~, D) - 1 =f dx (a+x)-2+°/2 
F ( D / 2 -  1) -c~ J 1 + e x 

= p ( D - 2 ) ~  D-2, D > 2 .  (B2) 

Using the definition of the reduced susceptibility~,T(D ) (see (42)), we obtain: If D > 2, 

XT(D) = (1/p(D)~O)O/~oc(p(D)X D) = p ( D - 2 ) ~ D - Z / p ( D ) X  D. [] (B3) 

Result (B3) attaches an interesting physical interpretation to the reduced iso- 
thermal susceptibility. The susceptibility in D dimensions represents a certain relation- 
ship of the density in dimensions D - 2 and D. This is one reason why the knowledge 
of dimensional dependence is useful. Because of this relationship, the susceptibility in 
an even-numbered dimension is related to that in other even-numbered dimensions. A 
similar relationship exists between odd-numbered dimensions, but not between even- 
and odd-numbered dimensions (sometimes referred to as an even-odd effect). There is 
a similar effect to be found in a system of free Bose particles. 

Appendix C 

Density and average kinetic energy 

In appendix B we have shown that if D > 2, the isothermal susceptibility ZT.(D) 
may be expressed as a relationship of the density in dimensions D - 2 to dimensions D. 
One can show that a similar relationship exists in the average kinetic energy. 

Let the density in dimensions D be written as (see eq. (4)): 

p(D)~O - 1 i d x G ( x , z ; D ) ,  (C1) 
F(D/2)  0 

where 

G(x, z;D) = x -1 +°/2n(x, z), (C2) 

with n(x, z) given by (2). The average kinetic energy per particle may be defined as 

<e) = n(k) e/Zk n(k). (c3) 

Converting the sum into an integral, we may write 

1 7 
Y. n(k )e---) J dx x G(x,z;D) (C4a) 
k fl ~'DF(D/2) o 

= (D~2/2~)p(D + 2). (C4b) 
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In obtaining (C4b), we have used the relation 

xG(x,  z; D) = G(x, z; D + 2). 

Hence, 

fl@) = (D/2)  A 2 p ( D +  2) /p (D) ,  

or 

(8) = (h2 /2rcm)p(D + 2) /p(D) .  

(C5) 

(C6a) 

(C6b) 

That is, the average kinetic energy is a relationship of  the density in dimensions D + 2 
to dimensions D. It is in the opposite direction to the relationship found for the iso- 
thermal susceptibility. It implies that the susceptibility can be more singular than the 
energy. 

At low temperatures, using (18) we obtain 

(e) /#o = (DID + 2)( 1 + (7g 2 / 12)(D + 2) a o  2 + . . .  ). (C8) 

Observe that at T = 0 and D = 3, we recover the well-known result that (e) = (3/5)#0. 
At high temperatures, using (6) we obtain 

fl(E) = (D/2)(1 + (1/2)D/2+1z+ ...).  (C9) 

We also recognize the limiting high temperature solution at once. 
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